Serveur d'exploration Covid et maladies cardiovasculaires

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

COVID-19, ACE2, and the cardiovascular consequences.

Identifieur interne : 000336 ( Main/Exploration ); précédent : 000335; suivant : 000337

COVID-19, ACE2, and the cardiovascular consequences.

Auteurs : Andrew M. South [États-Unis] ; Debra I. Diz [États-Unis] ; Mark C. Chappell [États-Unis]

Source :

RBID : pubmed:32228252

Descripteurs français

English descriptors

Abstract

The novel SARS coronavirus SARS-CoV-2 pandemic may be particularly deleterious to patients with underlying cardiovascular disease (CVD). The mechanism for SARS-CoV-2 infection is the requisite binding of the virus to the membrane-bound form of angiotensin-converting enzyme 2 (ACE2) and internalization of the complex by the host cell. Recognition that ACE2 is the coreceptor for the coronavirus has prompted new therapeutic approaches to block the enzyme or reduce its expression to prevent the cellular entry and SARS-CoV-2 infection in tissues that express ACE2 including lung, heart, kidney, brain, and gut. ACE2, however, is a key enzymatic component of the renin-angiotensin-aldosterone system (RAAS); ACE2 degrades ANG II, a peptide with multiple actions that promote CVD, and generates Ang-(1-7), which antagonizes the effects of ANG II. Moreover, experimental evidence suggests that RAAS blockade by ACE inhibitors, ANG II type 1 receptor antagonists, and mineralocorticoid antagonists, as well as statins, enhance ACE2 which, in part, contributes to the benefit of these regimens. In lieu of the fact that many older patients with hypertension or other CVDs are routinely treated with RAAS blockers and statins, new clinical concerns have developed regarding whether these patients are at greater risk for SARS-CoV-2 infection, whether RAAS and statin therapy should be discontinued, and the potential consequences of RAAS blockade to COVID-19-related pathologies such as acute and chronic respiratory disease. The current perspective critically examines the evidence for ACE2 regulation by RAAS blockade and statins, the cardiovascular benefits of ACE2, and whether ACE2 blockade is a viable approach to attenuate COVID-19.

DOI: 10.1152/ajpheart.00217.2020
PubMed: 32228252
PubMed Central: PMC7191628


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">COVID-19, ACE2, and the cardiovascular consequences.</title>
<author>
<name sortKey="South, Andrew M" sort="South, Andrew M" uniqKey="South A" first="Andrew M" last="South">Andrew M. South</name>
<affiliation wicri:level="2">
<nlm:affiliation>Cardiovascular Sciences Center, Wake Forest School of Medicine, Winston-Salem, North Carolina.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Caroline du Nord</region>
</placeName>
<wicri:cityArea>Cardiovascular Sciences Center, Wake Forest School of Medicine, Winston-Salem</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Diz, Debra I" sort="Diz, Debra I" uniqKey="Diz D" first="Debra I" last="Diz">Debra I. Diz</name>
<affiliation wicri:level="2">
<nlm:affiliation>Cardiovascular Sciences Center, Wake Forest School of Medicine, Winston-Salem, North Carolina.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Caroline du Nord</region>
</placeName>
<wicri:cityArea>Cardiovascular Sciences Center, Wake Forest School of Medicine, Winston-Salem</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Chappell, Mark C" sort="Chappell, Mark C" uniqKey="Chappell M" first="Mark C" last="Chappell">Mark C. Chappell</name>
<affiliation wicri:level="2">
<nlm:affiliation>Cardiovascular Sciences Center, Wake Forest School of Medicine, Winston-Salem, North Carolina.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Caroline du Nord</region>
</placeName>
<wicri:cityArea>Cardiovascular Sciences Center, Wake Forest School of Medicine, Winston-Salem</wicri:cityArea>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2020">2020</date>
<idno type="RBID">pubmed:32228252</idno>
<idno type="pmid">32228252</idno>
<idno type="doi">10.1152/ajpheart.00217.2020</idno>
<idno type="pmc">PMC7191628</idno>
<idno type="wicri:Area/Main/Corpus">000391</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000391</idno>
<idno type="wicri:Area/Main/Curation">000391</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000391</idno>
<idno type="wicri:Area/Main/Exploration">000391</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">COVID-19, ACE2, and the cardiovascular consequences.</title>
<author>
<name sortKey="South, Andrew M" sort="South, Andrew M" uniqKey="South A" first="Andrew M" last="South">Andrew M. South</name>
<affiliation wicri:level="2">
<nlm:affiliation>Cardiovascular Sciences Center, Wake Forest School of Medicine, Winston-Salem, North Carolina.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Caroline du Nord</region>
</placeName>
<wicri:cityArea>Cardiovascular Sciences Center, Wake Forest School of Medicine, Winston-Salem</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Diz, Debra I" sort="Diz, Debra I" uniqKey="Diz D" first="Debra I" last="Diz">Debra I. Diz</name>
<affiliation wicri:level="2">
<nlm:affiliation>Cardiovascular Sciences Center, Wake Forest School of Medicine, Winston-Salem, North Carolina.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Caroline du Nord</region>
</placeName>
<wicri:cityArea>Cardiovascular Sciences Center, Wake Forest School of Medicine, Winston-Salem</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Chappell, Mark C" sort="Chappell, Mark C" uniqKey="Chappell M" first="Mark C" last="Chappell">Mark C. Chappell</name>
<affiliation wicri:level="2">
<nlm:affiliation>Cardiovascular Sciences Center, Wake Forest School of Medicine, Winston-Salem, North Carolina.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Caroline du Nord</region>
</placeName>
<wicri:cityArea>Cardiovascular Sciences Center, Wake Forest School of Medicine, Winston-Salem</wicri:cityArea>
</affiliation>
</author>
</analytic>
<series>
<title level="j">American journal of physiology. Heart and circulatory physiology</title>
<idno type="eISSN">1522-1539</idno>
<imprint>
<date when="2020" type="published">2020</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Animals (MeSH)</term>
<term>Betacoronavirus (metabolism)</term>
<term>Betacoronavirus (physiology)</term>
<term>Cardiovascular Diseases (enzymology)</term>
<term>Cardiovascular Diseases (virology)</term>
<term>Coronavirus Infections (enzymology)</term>
<term>Coronavirus Infections (epidemiology)</term>
<term>Coronavirus Infections (virology)</term>
<term>Humans (MeSH)</term>
<term>Male (MeSH)</term>
<term>Pandemics (MeSH)</term>
<term>Peptidyl-Dipeptidase A (metabolism)</term>
<term>Pneumonia, Viral (enzymology)</term>
<term>Pneumonia, Viral (epidemiology)</term>
<term>Pneumonia, Viral (virology)</term>
<term>Rats (MeSH)</term>
<term>Rats, Inbred Lew (MeSH)</term>
<term>Virus Internalization (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Animaux (MeSH)</term>
<term>Betacoronavirus (métabolisme)</term>
<term>Betacoronavirus (physiologie)</term>
<term>Humains (MeSH)</term>
<term>Infections à coronavirus (enzymologie)</term>
<term>Infections à coronavirus (virologie)</term>
<term>Infections à coronavirus (épidémiologie)</term>
<term>Maladies cardiovasculaires (enzymologie)</term>
<term>Maladies cardiovasculaires (virologie)</term>
<term>Mâle (MeSH)</term>
<term>Pandémies (MeSH)</term>
<term>Peptidyl-Dipeptidase A (métabolisme)</term>
<term>Pneumopathie virale (enzymologie)</term>
<term>Pneumopathie virale (virologie)</term>
<term>Pneumopathie virale (épidémiologie)</term>
<term>Pénétration virale (MeSH)</term>
<term>Rats (MeSH)</term>
<term>Rats de lignée LEW (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Peptidyl-Dipeptidase A</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymologie" xml:lang="fr">
<term>Infections à coronavirus</term>
<term>Maladies cardiovasculaires</term>
<term>Pneumopathie virale</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymology" xml:lang="en">
<term>Cardiovascular Diseases</term>
<term>Coronavirus Infections</term>
<term>Pneumonia, Viral</term>
</keywords>
<keywords scheme="MESH" qualifier="epidemiology" xml:lang="en">
<term>Coronavirus Infections</term>
<term>Pneumonia, Viral</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Betacoronavirus</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Betacoronavirus</term>
<term>Peptidyl-Dipeptidase A</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Betacoronavirus</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Betacoronavirus</term>
</keywords>
<keywords scheme="MESH" qualifier="virologie" xml:lang="fr">
<term>Infections à coronavirus</term>
<term>Maladies cardiovasculaires</term>
<term>Pneumopathie virale</term>
</keywords>
<keywords scheme="MESH" qualifier="virology" xml:lang="en">
<term>Cardiovascular Diseases</term>
<term>Coronavirus Infections</term>
<term>Pneumonia, Viral</term>
</keywords>
<keywords scheme="MESH" qualifier="épidémiologie" xml:lang="fr">
<term>Infections à coronavirus</term>
<term>Pneumopathie virale</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Humans</term>
<term>Male</term>
<term>Pandemics</term>
<term>Rats</term>
<term>Rats, Inbred Lew</term>
<term>Virus Internalization</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Animaux</term>
<term>Humains</term>
<term>Mâle</term>
<term>Pandémies</term>
<term>Pénétration virale</term>
<term>Rats</term>
<term>Rats de lignée LEW</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The novel SARS coronavirus SARS-CoV-2 pandemic may be particularly deleterious to patients with underlying cardiovascular disease (CVD). The mechanism for SARS-CoV-2 infection is the requisite binding of the virus to the membrane-bound form of angiotensin-converting enzyme 2 (ACE2) and internalization of the complex by the host cell. Recognition that ACE2 is the coreceptor for the coronavirus has prompted new therapeutic approaches to block the enzyme or reduce its expression to prevent the cellular entry and SARS-CoV-2 infection in tissues that express ACE2 including lung, heart, kidney, brain, and gut. ACE2, however, is a key enzymatic component of the renin-angiotensin-aldosterone system (RAAS); ACE2 degrades ANG II, a peptide with multiple actions that promote CVD, and generates Ang-(1-7), which antagonizes the effects of ANG II. Moreover, experimental evidence suggests that RAAS blockade by ACE inhibitors, ANG II type 1 receptor antagonists, and mineralocorticoid antagonists, as well as statins, enhance ACE2 which, in part, contributes to the benefit of these regimens. In lieu of the fact that many older patients with hypertension or other CVDs are routinely treated with RAAS blockers and statins, new clinical concerns have developed regarding whether these patients are at greater risk for SARS-CoV-2 infection, whether RAAS and statin therapy should be discontinued, and the potential consequences of RAAS blockade to COVID-19-related pathologies such as acute and chronic respiratory disease. The current perspective critically examines the evidence for ACE2 regulation by RAAS blockade and statins, the cardiovascular benefits of ACE2, and whether ACE2 blockade is a viable approach to attenuate COVID-19.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">32228252</PMID>
<DateCompleted>
<Year>2020</Year>
<Month>04</Month>
<Day>16</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>07</Month>
<Day>10</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1522-1539</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>318</Volume>
<Issue>5</Issue>
<PubDate>
<Year>2020</Year>
<Month>05</Month>
<Day>01</Day>
</PubDate>
</JournalIssue>
<Title>American journal of physiology. Heart and circulatory physiology</Title>
<ISOAbbreviation>Am. J. Physiol. Heart Circ. Physiol.</ISOAbbreviation>
</Journal>
<ArticleTitle>COVID-19, ACE2, and the cardiovascular consequences.</ArticleTitle>
<Pagination>
<MedlinePgn>H1084-H1090</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1152/ajpheart.00217.2020</ELocationID>
<Abstract>
<AbstractText>The novel SARS coronavirus SARS-CoV-2 pandemic may be particularly deleterious to patients with underlying cardiovascular disease (CVD). The mechanism for SARS-CoV-2 infection is the requisite binding of the virus to the membrane-bound form of angiotensin-converting enzyme 2 (ACE2) and internalization of the complex by the host cell. Recognition that ACE2 is the coreceptor for the coronavirus has prompted new therapeutic approaches to block the enzyme or reduce its expression to prevent the cellular entry and SARS-CoV-2 infection in tissues that express ACE2 including lung, heart, kidney, brain, and gut. ACE2, however, is a key enzymatic component of the renin-angiotensin-aldosterone system (RAAS); ACE2 degrades ANG II, a peptide with multiple actions that promote CVD, and generates Ang-(1-7), which antagonizes the effects of ANG II. Moreover, experimental evidence suggests that RAAS blockade by ACE inhibitors, ANG II type 1 receptor antagonists, and mineralocorticoid antagonists, as well as statins, enhance ACE2 which, in part, contributes to the benefit of these regimens. In lieu of the fact that many older patients with hypertension or other CVDs are routinely treated with RAAS blockers and statins, new clinical concerns have developed regarding whether these patients are at greater risk for SARS-CoV-2 infection, whether RAAS and statin therapy should be discontinued, and the potential consequences of RAAS blockade to COVID-19-related pathologies such as acute and chronic respiratory disease. The current perspective critically examines the evidence for ACE2 regulation by RAAS blockade and statins, the cardiovascular benefits of ACE2, and whether ACE2 blockade is a viable approach to attenuate COVID-19.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>South</LastName>
<ForeName>Andrew M</ForeName>
<Initials>AM</Initials>
<Identifier Source="ORCID">0000-0002-3204-4142</Identifier>
<AffiliationInfo>
<Affiliation>Cardiovascular Sciences Center, Wake Forest School of Medicine, Winston-Salem, North Carolina.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Diz</LastName>
<ForeName>Debra I</ForeName>
<Initials>DI</Initials>
<AffiliationInfo>
<Affiliation>Cardiovascular Sciences Center, Wake Forest School of Medicine, Winston-Salem, North Carolina.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Chappell</LastName>
<ForeName>Mark C</ForeName>
<Initials>MC</Initials>
<Identifier Source="ORCID">0000-0001-5869-6037</Identifier>
<AffiliationInfo>
<Affiliation>Cardiovascular Sciences Center, Wake Forest School of Medicine, Winston-Salem, North Carolina.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>R01 HL146818</GrantID>
<Acronym>HL</Acronym>
<Agency>NHLBI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R21 HD084227</GrantID>
<Acronym>HD</Acronym>
<Agency>NICHD NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2020</Year>
<Month>03</Month>
<Day>31</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Am J Physiol Heart Circ Physiol</MedlineTA>
<NlmUniqueID>100901228</NlmUniqueID>
<ISSNLinking>0363-6135</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>EC 3.4.15.1</RegistryNumber>
<NameOfSubstance UI="D007703">Peptidyl-Dipeptidase A</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.4.17.-</RegistryNumber>
<NameOfSubstance UI="C413524">angiotensin converting enzyme 2</NameOfSubstance>
</Chemical>
</ChemicalList>
<SupplMeshList>
<SupplMeshName Type="Disease" UI="C000657245">COVID-19</SupplMeshName>
<SupplMeshName Type="Organism" UI="C000656484">severe acute respiratory syndrome coronavirus 2</SupplMeshName>
</SupplMeshList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000073640" MajorTopicYN="N">Betacoronavirus</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002318" MajorTopicYN="N">Cardiovascular Diseases</DescriptorName>
<QualifierName UI="Q000201" MajorTopicYN="Y">enzymology</QualifierName>
<QualifierName UI="Q000821" MajorTopicYN="Y">virology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018352" MajorTopicYN="N">Coronavirus Infections</DescriptorName>
<QualifierName UI="Q000201" MajorTopicYN="Y">enzymology</QualifierName>
<QualifierName UI="Q000453" MajorTopicYN="N">epidemiology</QualifierName>
<QualifierName UI="Q000821" MajorTopicYN="N">virology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008297" MajorTopicYN="N">Male</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D058873" MajorTopicYN="N">Pandemics</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007703" MajorTopicYN="N">Peptidyl-Dipeptidase A</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011024" MajorTopicYN="N">Pneumonia, Viral</DescriptorName>
<QualifierName UI="Q000201" MajorTopicYN="Y">enzymology</QualifierName>
<QualifierName UI="Q000453" MajorTopicYN="N">epidemiology</QualifierName>
<QualifierName UI="Q000821" MajorTopicYN="N">virology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D051381" MajorTopicYN="N">Rats</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011917" MajorTopicYN="N">Rats, Inbred Lew</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D053586" MajorTopicYN="N">Virus Internalization</DescriptorName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="Y">ACE2</Keyword>
<Keyword MajorTopicYN="Y">ANG II</Keyword>
<Keyword MajorTopicYN="Y">COVID-19</Keyword>
<Keyword MajorTopicYN="Y">SARS-CoV-2</Keyword>
<Keyword MajorTopicYN="Y">renin-angiotensin system</Keyword>
<Keyword MajorTopicYN="Y">statins</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pmc-release">
<Year>2021</Year>
<Month>05</Month>
<Day>01</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2020</Year>
<Month>4</Month>
<Day>2</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>4</Month>
<Day>17</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2020</Year>
<Month>4</Month>
<Day>2</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">32228252</ArticleId>
<ArticleId IdType="doi">10.1152/ajpheart.00217.2020</ArticleId>
<ArticleId IdType="pmc">PMC7191628</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Heart Vessels. 2017 May;32(5):618-627</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28013371</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Appl Physiol (1985). 2010 Apr;108(4):923-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20093667</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nephrology (Carlton). 2011 Aug;16(6):567-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21457402</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Physiol Regul Integr Comp Physiol. 2011 Apr;300(4):R804-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21178125</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2006 Dec 21;444(7122):1088-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17167413</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2020 Mar 13;367(6483):1260-1263</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32075877</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Pharmacol Res. 2016 May;107:154-162</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26995300</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Circ Res. 2005 Oct 28;97(9):946-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16179584</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Pharmacol Res. 2012 Sep;66(3):269-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22580236</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Med Virol. 2020 Feb 27;:</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32104915</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Exp Physiol. 2008 May;93(5):694-700</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18356558</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>N Engl J Med. 2020 Apr 30;382(18):1708-1720</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32109013</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Cell Cardiol. 2016 Aug;97:180-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27210827</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Physiol Genomics. 2011 Jul 14;43(13):829-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21540301</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cardiovasc Res. 2014 Feb 1;101(2):236-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24193738</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Regul Pept. 2011 Jan 17;166(1-3):90-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20854846</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neurochem Res. 2019 Jun;44(6):1323-1329</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30443713</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Exp Physiol. 2008 May;93(5):622-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18223026</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Exp Physiol. 2008 May;93(5):613-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18356559</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PPAR Res. 2019 Feb 3;2019:1371758</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30863432</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Hypertension. 2016 Aug;68(2):365-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27217402</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Korean J Crit Care Med. 2017 May;32(2):154-163</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31723629</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Nephrol. 2009;29(6):524-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19077419</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Circ Res. 2016 Apr 15;118(8):1313-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27081112</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Nephrol Hypertens. 2018 Jan;27(1):35-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29045335</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2005 Jul 7;436(7047):112-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16001071</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Commun. 2014 May 06;5:3595</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24800963</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Endocrinol (Lausanne). 2014 Jan 09;4:201</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24409169</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Pathol. 2011 Dec;225(4):618-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22009550</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Protein Pept Lett. 2017 Nov 17;24(9):809-816</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28758593</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>N Engl J Med. 2017 Aug 3;377(5):419-430</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28528561</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Peptides. 2005 Jul;26(7):1270-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15949646</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arterioscler Thromb Vasc Biol. 2008 Jul;28(7):1270-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18403726</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Crit Care Med. 2019 Feb;47(2):152-158</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30653055</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Infect Dis. 2020 Mar 12;94:91-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32173574</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Pharmacol. 2015 Feb 1;93(3):343-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25482567</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Physiol Heart Circ Physiol. 2005 Oct;289(4):H1351-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15894569</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Lancet. 2020 Feb 15;395(10223):497-506</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31986264</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Kidney Int. 2005 Nov;68(5):2189-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16221218</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Physiol Heart Circ Physiol. 2008 Oct;295(4):H1377-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18660448</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Intensive Care Med Exp. 2015 Dec;3(1):44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26215809</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Circulation. 2005 May 24;111(20):2605-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15897343</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Amino Acids. 2015 Apr;47(4):693-705</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25534429</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci China Life Sci. 2020 Mar;63(3):364-374</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32048163</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Med. 2020 Apr;14(2):185-192</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32170560</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Cardiol. 2014 Jul;11(7):413-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24776703</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Renin Angiotensin Aldosterone Syst. 2015 Jun;16(2):249-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25795458</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2019 Mar 5;93(6):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30626688</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Med. 2005 Aug;11(8):875-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16007097</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Physiol Heart Circ Physiol. 2016 Jan 15;310(2):H137-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26475588</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Physiol Lung Cell Mol Physiol. 2018 Jan 01;314(1):L17-L31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28935640</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Hypertension. 2007 Oct;50(4):596-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17785634</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Oral Sci. 2020 Feb 24;12(1):8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32094336</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Physiol Lung Cell Mol Physiol. 2009 Jul;297(1):L84-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19411314</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Physiol Heart Circ Physiol. 2006 Nov;291(5):H2166-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16766648</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2010 Sep 7;107(36):15886-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20798044</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Physiol Heart Circ Physiol. 2019 May 1;316(5):H958-H970</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30707614</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Pathol. 2004 Dec;204(5):587-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15538735</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Cardiol. 2020 May;17(5):259-260</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32139904</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Caroline du Nord</li>
</region>
</list>
<tree>
<country name="États-Unis">
<region name="Caroline du Nord">
<name sortKey="South, Andrew M" sort="South, Andrew M" uniqKey="South A" first="Andrew M" last="South">Andrew M. South</name>
</region>
<name sortKey="Chappell, Mark C" sort="Chappell, Mark C" uniqKey="Chappell M" first="Mark C" last="Chappell">Mark C. Chappell</name>
<name sortKey="Diz, Debra I" sort="Diz, Debra I" uniqKey="Diz D" first="Debra I" last="Diz">Debra I. Diz</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/CardioCovidV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000336 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000336 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    CardioCovidV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:32228252
   |texte=   COVID-19, ACE2, and the cardiovascular consequences.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:32228252" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a CardioCovidV1 

Wicri

This area was generated with Dilib version V0.6.35.
Data generation: Tue Aug 4 15:08:30 2020. Site generation: Wed Jan 27 11:23:02 2021